匹兹堡大学前列腺癌AI成果登《柳叶刀》子刊

UPMC的首席病理学家兼病理学副教授,皮特大学生物医学信息学教授Rajiv Dhir博士说:“人类擅长识别异常,但是他们有自己的偏见或过去的经验。机器学习则却能够最大程度上保持标准化与客观性。”

值得注意的是,该算法也不仅仅停留在癌症的检测,更重要的是实现了对肿瘤分级、大小和周围神经的侵犯等判断,这些都是病理报告所要求的临床重要特征。

然后,该算法在一组单独的1600张图像上进行了测试,这些图像取自UPMC的100名疑似前列腺癌患者。

了解到,在测试过程中,AI在检测前列腺癌方面显示出98%的敏感性和97%的特异性。

消息,近日,UPMC和匹兹堡大学研究人在《The Lancet Digital Health》上发表的一项研究表明,迄今为止,使用AI识别和表征前列腺癌的准确性非常高。

为了训练人工智能识别前列腺癌,Dhir和他的同事们提供了从病人活检中提取的100多万份染色组织切片的图像。每幅图像都由病理学专家进行标记,以教人工智能如何区分健康和异常组织。

但是Dhir解释说,这并不一定意味着该机器优于人类。

此外,AI还成功识别出了六张新片子,这些片子此前没有被病理学专家注意到。

例如,在评估这些病例的过程中,病理学家可以简单地在该患者样本中的其他地方看到足够的恶性证据。但是,对于经验不足的病理学家而言,该算法可以提供支持作用,以捕获否则可能会丢失的病例。

Dhir说:“这样的算法在非典型的损伤中特别有用。非专业人士可能无法做出正确的评估。这是这种系统的主要优势。”